
Unified Parallel C at LBNL/UCB

The Berkeley UPC Compiler:
Implementation and Performance

Wei Chen
the LBNL/Berkeley UPC Group

Unified Parallel C at LBNL/UCB

Overview of Berkeley UPC
Compiler

TranslatorUPC Code

Translator Generated C Code

Berkeley UPC Runtime System

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Compiler-
independent

Language-
independen
t

Two Goals: Portability and High-Performance

Compilation all
encapsulated in one
“upccupcc” command

Unified Parallel C at LBNL/UCB

A Layered Design

• UPC to C translator: Translates UPC code into C, inserting
calls to the runtime library for parallel features

• UPC runtime: Allocate/initialize shared data, perform operations
on pointer-to-shared

• GASNet: An uniform interface for low-level communication
primitives

• Portable:
- C is our intermediate language

- GASNet itself has a layered design with a small core

• High-Performance:
- Native C compiler optimizes serial code

- Translator can perform communication optimizations

- GASNet can access network directly

Unified Parallel C at LBNL/UCB

Implementing the UPC to C
Translator

Source File

UPC front end

Whirl w/ shared types

Backend lowering

Whirl w/ runtime calls

Whirl2c

ANSI-compliant C Code

• Based on Open64

• Supports both 32/64 bit platforms

• Designed to incorporate existing
 optimization framework in open64
 (LNO, IPA, WOPT)

• Communicate with runtime via a
standard API and configuration files

• Will present our implementation in
Open64 workshop in March

Unified Parallel C at LBNL/UCB

Components in the Translator

• Front end:
- UPC extensions to C:

shared qualifier, block size, forall loops, builtin functions
and values (THREADS, memget, etc), strict/relaxed

- Parses and type-checks UPC code, generates Whirl, with
UPC-specific information available in symbol table

• Backend:
- Transform shared read and writes into calls into runtime

library. Calls can be blocking/non-blocking/bulk/register-
based

- Apply standard optimizations and analyses

• Whirl2c:
- Convert Whirl back to C, with shared variables declared as

opaque pointer-to-shared types
- Special handling for static user data

Unified Parallel C at LBNL/UCB

Pointer-to-Shared: Phases

• UPC has three different kinds of distributed arrays:
- Block-cyclic:
 shared [4] double a [n];
- Cyclic:
 shared double a [n];
- Indefinite (local to allocating thread):
 shared [] double *a = (shared [] double *) upc_alloc(n);

• A pointer needs a “phase” to keep track of where it is in a block
- Source of overhead for updating and dereferencing

• Special case for “phaseless” pointers
- Cyclic pointers always have phase 0
- Indefinite blocked pointers only have one block
- Don’t need to keep phase in pointer operations for cyclic and

indefinite
- Don’t need to update thread id for indefinite

phaseless

Unified Parallel C at LBNL/UCB

Thread 1 Thread N -1

Address Thread Phase

0 2addr

Phase
Shared
Memory

Thread 0

block
size

start of array object

…

…

Accessing Shared Memory in UPC

Unified Parallel C at LBNL/UCB

Pointer-to-Shared
Representation

• Important to performance, since it affects all shared
operations

• Shared pointer representation trade-offs

- Use of scalar types rather than a struct may improve
backend code quality

- Faster pointer manipulation, e.g., ptr+int as well as
dereferencing

- These are important in C, because array reference are
based on pointers

- Smaller pointer size may help performance
- Use of packed 8-byte format may allow pointers to reside in

a single register

- But very large machines may require a longer representation

Unified Parallel C at LBNL/UCB

Let the Users Decide

• Compiler offers two pointer-to-shared configurations

- Packed 8-byte format that gives better
performance

- Struct format for large-scale programs

• Portability and performance balance in UPC compiler

- Representation is hidden in the runtime layer

- Can easily switch at compiler installation time

- Modular design means easy to add new
representations (packed format done in one day)

- May have a different representation for phaseless
pointers (skipping the phase field)

Unified Parallel C at LBNL/UCB

Preliminary Performance

• Testbed
- Compaq AlphaServer in ORNL, with Quadrics conduit
- Compaq C compiler for the translated C code

• Microbenchmarks
- Measures the cost of UPC language features and constructs
- Shared pointer arithmetic, forall, allocation, etc
- Vector addition: no remote communication

• Performance-tuning benchmarks (Costin)
- Measure the effectiveness of various communication optimizations
- Scale: test message pipelining and software pipelining

• NAS Parallel Benchmarks (Parry)
- EP: no communication
- IS: large bulk memory operations
- MG: bulk memput

Unified Parallel C at LBNL/UCB

Performance of Shared Pointer
Arithmetic

Cost of Shared Pointer Operations

0

10

20

30

40

50

60

70

80

90

100

generic cyclic indefinite regular

Pointer Type

nu
m

be
r o

f c
yc

les

ptr + int -- struct

ptr + int -- packed

ptr - ptr -- struct

ptr - ptr -- packed

ptr equality -- struct

ptr equality -- packed

• Phaseless pointer an important optimization
• Indefinite pointers almost as fast as regular C pointers

• Packing also helps, especially for pointer and int addition

1 cycle =
1.5ns

Unified Parallel C at LBNL/UCB

Comparison with HP UPC v1.7

Pointer-to-shared operations

0

5

10

15

20

25

30

35

40

45

50

generic cyclic indefinite

type of pointer

n
u

m
b

er
 o

f
cy

cl
es ptr + int -- HP

ptr + int -- Berkeley

ptr - ptr -- HP

ptr -ptr -- Berkeley

ptr == ptr -- HP

ptr == ptr-- Berkeley

• HP a little faster, due to it generating native code
• Gap for addition likely smaller with further hand-tuning

1 cycle =
1.5ns

Unified Parallel C at LBNL/UCB

Cost of Shared Memory Access

• Local accesses somewhat slower than private accesses
• HP has improved local access performance in new version

• Remote accesses worse than local, as expected
• Runtime/GASNet layering for portability is not a problem

Cost of Shared Local Memory Access

750

8

240

7
0

100

200

300

400

500

600

700

800

HP read Berkeley
read

HP write Berkeley
write

#
 o

f
c

y
c

le
s

 (
1

.5
 n

s
/c

y
c

le
)

Cost of shared remote access

0

1000

2000

3000

4000

5000

6000

HP read Berkeley
read

HP write Berkeley
write

#
 o

f
c

y
c

le
s

 (
1

.5

n
s

/c
y

c
le

)

Unified Parallel C at LBNL/UCB

UPC Loops

• UPC has a “forall” construct for distributing
computation
shared int v1[N], v2[N], v3[N];

upc_forall(i=0; i < N; i++; &v3[i])

 v3[i] = v2[i] + v1[i];

• Two kinds of affinity expressions:

- Integer (compare with thread id)

- Shared address (check the affinity of address)

• Affinity tests are performed on every iteration

10176# cycles

shared addressintegerNoneAffinity Exp

Unified Parallel C at LBNL/UCB

Overhead of Dynamic Allocation

time for upc_all_alloc,size = 1KB

0

100

200

300

400

500

600

1 3 5 7 9

number of threads

ti
m

e(
m

ic
ro

se
co

n
d

s)

berkeley upc

HP upc

• Faster than HP, due to the benefit of Active Messages
• Shared allocation functions easy to implement, and scale well
• Should perform better once the collectives (broadcast)are added to
GASNet

• Shared locks also easy to implement using AM

Unified Parallel C at LBNL/UCB

Overhead of Local Shared
Accesses

Vector Addition

0
1
2
3
4
5
6
7
8

0 5 10

number of threads

M
o

p
s

\s
e

c
o

n
d

HP

Berkeley
cyclic

Berkeley
blocked

• Berkeley beats HP, but neither performs well
• Culprit: cost of affinity test and pointer-to-shared
• Privatizing local shared accesses improves

performance by an order of magnitude

Optimizations on Vector Add

1

10

100

1000

0 2 4 6 8 10

number of threads

M
o

p
s

/s
e

c
o

n
d

 (
lo

g
 s

c
a

le
)

naïve

opt1

opt2

Unified Parallel C at LBNL/UCB

Observations on the Results

• Acceptable overhead for shared memory operations
and access latencies

• Phaseless pointers are good for performance

• Packed representation is also effective

• Good performance compared to HP UPC 1.7

• Still lots of opportunities for optimizations

Unified Parallel C at LBNL/UCB

Compiler Status

• Targeting a 3/31 release that is fully UPC 1.1 compliant

• Compiler builds with gcc 2.96 and 3.2 on Linux

- remote compilation option for other platforms

• Runtime and GASNet tested on AlphaServer
(Quadrics), Linux (Myrinet), and IBM SP (LAPI)

• Successfully built and run NAS UPC benchmarks (EP,
IS, CG, MG) ~ 2000 lines of code

• A paper submitted for publication

Unified Parallel C at LBNL/UCB

Challenges That We Solved

• Portability is non-trivial to achieve
- Double include: translator can’t simply output

declarations in system headers, because the
runtime/GASNet may #include it

- Porting the translator: Open64 originally only compiled
for gcc2.96

- IA-32 Support: Open64 was designed to generate IA-64
code

- Preprocessor issues: Open64’s C front end was not
ANSI-compliant

- Static User Data: Elaborate scheme to allocate and
initialize static global data

- Memory Management, Machine-specific information,
and many more.

Unified Parallel C at LBNL/UCB

Future Work: Optimizations

• Overlapping Communication with Computation
• Separate get(), put() as far as possible from sync()

• Privatizing Accesses for Local Memory
• Can be done in conjunction with elimination of forall
loop affinity tests

• Message Pipelining
• Effectiveness varies based on the network

• Message Coalescing/Aggregation/Vectorization
• Reduce the number of small message traffic

• Prefetching and Software Caching
• Difficulty is in understanding the UPC memory model

Unified Parallel C at LBNL/UCB

Future Work: Functionality

• Pthread and System V Shared Memory Support

• Port the translator to more platforms

• Debugging Support

• Merge with ORC (Open Research Compiler) to get
new optimizations and bug fixes

• (Possible) Native Code Generation for IA64

